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First, the linear stability of the flow between two concentric cylinders when the 
outer one is a t  rest and the inner has angular velocity R{1+ e coswt} is con- 
sidered. In  the limit in which e and w tend to zero it is found that the critical 
Taylor number a t  which instability first occurs is decreased by an amount of 
order €2 from its unmodulated value, the stabilizing effect a t  order e2w2 being 
slight. The limit in which w tends to infinity with E arbitrary is then studied. In  
this case it is found that the critical Taylor number is decreased by an amount of 
order e2w-3 from its unmodulated value. 

Second, the effect of taking nonlinear terms into account is investigated. It is 
found that equilibrium perturbations of small but finite amplitude can exist 
under slightly supercritical conditions in both the high and low frequency limits. 
Some comparisons with experimental results are made, but these indicate that 
further theoretical work is needed for a broad band of values of w.  In appendix B 
it is shown how this can be done by an alternative formulation of the problem. 

1. Introduction 
Our concern is with the linear and nonlinear stability of the flow between 

concentric cylinders against a Taylor-vortex type of perturbation when the 
outer cylinder is at  rest and the inner has angular velocity R{ 1 i- e cos wt}, t being 
the time and Q, w and e constants. When e is zero the appearance of Taylor 
vortices is predicted by linear stability theory when the Taylor number, which 
is proportional to R2, reaches a certain critical value. The problem with e non-zero 
has been investigated experimentally by Donnelly (1964)) who found that the 
critical value of the Taylor number at  which a Taylor-vortex type of flow 
appeared was increased from its unmodulated value. Moreover, he found that 
for all values of e the maximum value of the critical Taylor number, i.e. the 
maximum enhancement of stability, always occurred at  about the same value 
of the frequency w .  This value of w corresponds to a value of 0.27 for a frequency 
parameter g, which is defined later by (2.2) to be proportional to the ratio of the 
separation of the cylinders to the thickness of the Stokes layer associated with 
the oscillatory motion of the inner cylinder. 

As a starting point we restrict attention to the stability of the basic unsteady 
flow to disturbances which are small enough for linearization to be a valid 
approximation. This is followed later by a nonlinear analysis. The procedure 
adopted is as follows. 
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In $ 2  we determine the basic flow and obtain the partial differential equa- 
tions governing the stability of this flow. These equations must be solved subject 
to there being no relative velocity at the walls of the cylinders. Following 
Venezian (1969) and Rosenblat & Herbert (1970), who considered the thermal 
analogue of the cylinder problem, we use the periodicity criterion to determine 
a ‘boundary’ between stability and instability. Venezian obtained a solution to 
the related BBnard convection problem by letting the parameter corresponding 
to E be small and expanding in powers of this parameter. Rosenblat & Herbert 
used a WKB approach when the frequency of the basic temperature distribution 
was small. In  this paper we consider in turn two other limiting types of procedure. 

In  3 3 we expand both the Taylor number T and the velocity field in terms of 
s and cr. We seek a solution of the partial differential system governing the linear 
stability of the flow by letting E: tend to zero with a/s fixed and equal to a, say. 
This is done so that the dominant time dependences of the system ‘balance’ in 
a sense which we shall discuss later. A similar idea was used by DiPrima & Stuart 
(1972) in the mathematically related problem of the non-local stability of the 
flow between eccentric rotating cylinders. Thus we expand the perturbation 
velocity and the Taylor number in powers of s and replace a by as  in the partial 
differential system, equate like powers of s and obtain ordinary differential 
systems in which the time variable appears only as a parameter. At order EO, the 
Taylor-vortex steady velocity field multiplied by an unknown funetion of time 
is obtained. A differential equation for this function follows from a solvability 
condition applied to the order-e system. The order-s term in the expansion of T 
is determined by the condition that the solution should be a periodic function of 
wt. Higher-order terms in the expansion of T are obtained also. The first non-zero 
correction to T from its unmodulated value, which we denote by To, is of order e2. 

In  contrast to 3 3, we consider in 3 4 the limit of large IT with E arbitrary. The 
time dependence of the basic flow is then confined to a thin layer near the inner 
cylinder, the Stokes layer; we shall refer to this layer as the inner layer. However, 
the interaction of the basic flow with the disturbance in this layer causes the 
disturbance velocity field to have a time dependence throughout the fluid. Hence 
a second Stokes layer, the ‘outer’ layer, is required at  the outer cylinder to satisfy 
the boundary conditions. We shall refer to the region between the Stokes layers 
as the ‘central’ region. In  each region we first expand the disturbance velocity 
field in a Fourier series in time, and then expand the Fourier coefficients and the 
Taylor number in powers of a-4. The disturbance velocity is then obtained in each 
region by equating like powers of a-4 and solving the resulting differential 
systems. The velocity is then matched in assumed domains of overlap. Con- 
comitantly, terms in the expansion of T are determined by matching the steady 
parts of the velocity field. The analysis used in $4 is related to that used by 
Schlichting (1932), Stuart (1966) and Riley (1967), who discussed the steady 
streaming induced by an oscillatory viscous flow. The first non-zero correction to 
T from To is of order c r 4  and denoted by T6/v3. 

In 3 5 we describe the numerical work required to solve the ordinary differential 
systems appearing in $ 3  3 and 4. The results show that the first correction terms 
to T from To in both limits are negative, thus suggesting a destabilization of the 
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flow. However, higher-order terms in both expansions give a stabilizing effect. 
The discrepancy between these results and those of Donnelly (1964) leads us to 
ask whether nonlinear effects are important. This possibility is explored in the 
latter part of the paper. 

In $ 6, therefore, we return to the limit of E tending to zero with cr/e fixed, but 
include nonlinear terms, and obtain a solution to the differential system by the 
method of multiple scales. The Taylor number is again perturbed by an amount 
of order E from its critical value To for the steady problem. The perturbation 
velocity is also expanded in powers of 8 and we find that the time-dependent 
amplitude A of the leading axially periodic Fourier mode satisfies the following 
differential equation : 

dA -I’ 
d(o t )  2T0 

01- = - {T, + 2T0 cos wt} A + a, A3. 

Here T, is the order-e alteration to the perturbed Taylor number and I? and a, are 
negative constants. Since a, is negative the A3 term in ( 1 . 1 )  stabilizes the flow. 
Equation ( 1 . 1 )  has a solution which is periodic in wt in which T, determines the 
elevation of the Taylor number above its unmodulated critical value. 

In $ 7  we examine the limit in which B tends to infinity with E arbitrary, 
assuming that the Taylor number T is given by 

T = To + TJg3 + O(~r-8 ) .  ( 1 . 2 )  

It follows from the results of $ 4  that the flow is stable to infinitesimally small 
disturbances if 

Ti < T,. 

To the order of magnitude in B to which we work, we find that the nonlinear effects 
are only important through their effect on the steady part of the perturbation 
velocity. The amplitude A! of the leading steady Fourier mode is given by 

so that T, must be greater than Ti if equilibrium perturbations are to exist. 
In  $ 8  we discuss the relevance of this work to Donnelly’s observations, and 

find that the low frequency nonlinear calculations explain some of his results but 
that our theory does not predict an optimum value of v for the enhancement of 
stability, We also discuss other difficulties which arise when we try to compare 
the theoretical and experimental results. 

2. The basic flow and the disturbance equations 
We suppose that the viscous incompressible fluid between the infinitely long 

concentric cylinders of radii R, and R, has density p and kinematic viscosity v. 
We assume throughout this paper that the separation d of the cylinders is small 
compared with R,. Thus terms of order d/R, are neglected in the following 
analysis. We take cylindrical polar co-ordinates ( r ,  0, x ) ,  with the z axis along the 
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axis of the cylinders, and take (u, v,  w) as the corresponding velocity. If we define 
dimensionless variables <, $ and T by 

6 = (r  - R,)/d, $ = zId, T = wt, 

then the velocity field between the cylinders when the outer one is a t  rest and the 
inner has angular velocity R{ 1 + E cos at) is (0, RR, r( <, 7 )  , 0) , where 

e ei7 sinh (i5)t ( I  - [) +complex conjugate}. (2.1) sinh (;a)& 

Here (T is the frequency parameter, mentioned in tj 1, and is defined by 

(T = W d 2 1 V .  (2.2) 

Suppose that we perturb this flow such that the disturbed velocity field is 
(u, v + QR, 7, w). We rescale (u, v, w) by writing 

u = (- ~ 1 % )  u*, v = $QR,v*, w = ( -  ~ / 2 d )  w*, 

and we can show from the momentum and continuity equations and the condition 
of zero relative velocity at the boundaries that u", v* and w* are determined by 

I ( 9 - n $ ) 9 u *  = TV---- -8%" I a2Ql+; a2Qz 
a p  2 a p  2%3@ 

[9--a;]v* = -,,u*-~Q3, av 

au*pg + awlag = 0, 

u* = v* = w* = 0, < = 0 , l .  

In the above system we have introduced 9, Q1, Qz and Q3, which are defined by 

9 a z l a p  + a z l a p ,  (2.4) 

(2.5) 

(2.6) 

I Q, = u* au*lag+ w* au*la$ - *T~*Z ,  

Q~ = u* aw*pc+ w* aw*p#, 
Q~ = U* av*lagt- W* av*/a+. 

We have also defined the Taylor number T by 

T = 2Q2Rld31vZ, 

which represents the ratio of the destabilizing centrifugal and stabilizing viscous 
forces acting on the fluid. Finally we note that (2.3) are the so-called 'small gap' 
equations obtained from the full equations by letting d/R, tend to zero with 
5, T ,  q5, u*, v*, w*, T ,  c and 8 held fixed. 

3. Linear stability for small frequencies 
In this section we assume that the disturbance to the flow is small enough for 

linearization to be a valid procedure; thus we neglect the nonlinear terms Q1, Qz 
and Q3 which appear in (2.3). We further assume that the disturbance is periodic 
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along the axis of the cylinder. Thus if a is a non-dimensional wavenumber we 
assume that u* and w* are proportional to cos aq5 and w* is proportional to sin ad. 
If we expand 7, given by (2.2), in (2.3) for small CT and drop the nonlinear terms 
and the star notation we can show that 

{M - CT a/aT} Mu = - a2Tv{xo + ex1 cos T + e q 2  sin 7.. .}, 

{M - (T a/&} w = u{1+ e c o s ~  + eqh2 sin T . . .}, (3.1) 

(3.2 a )  

and u and w are now independent of q5. The first few functions xi([) appearing 
above are given by 

x o  = x l =  1-59 x 2  = +(53-3352+2C), (3.2 b)  

I u = 2, = au/a< = 0, 6 = 0, I, 

where M = a2/ag2 - a2, 

and for convenience we have defined q5$ = - dXi/d& 
We now ask if it is possible to constrain e and t~ to tend to zero in such a way 

that the dominant r dependences of the right- and left-hand sides of the two 
differential equations in (3.1) 'balance' in some sense. If we assume that T varies 
little from its unmodulated value To we can see that the responses of the 
terms on the left-hand sides of these equations are proportional to the T depend- 
ences imposed by the e cos T terms on the right-hand sidesif we have @ - e. Hence 
we write 

0- = 016 (3.3) 

and let e tend to zero with a fixed. The physical interpretation of this is that we 
are allowing the frequency and velocity amplitude of the oscillations of the inner 
cylinder to tend to zero in such a way that the oscillatory displacement 
a-l(Td/2R1)+ of the cylinder remains constant if T and dlR, are held fixed. We 
expand the perturbation velocities and the Taylor number in the form 

(3.4 a)  u = U0+EUl+€2U 2..., 

w = w0+ew1+e2v 2 . . . ,  

T = To+~Tl+&'2... . 

(3.4 b )  

(3.4c) 

It is clear that, since changing B to - e does not change the physical problem under 
consideration, we should expect Ti = 0 for i odd, and this is found in the calcula- 
tions. Substituting for CT, u, w and T from (3.3), (3.4) into (3.1) and equating 
terms of order P we obtain 

1 M2u0 + = U O  - MwO = 0, 

u0 = v0 = auo/ac: = 0, 5 = 0, I. 
(3.5) 

Since r does not appear explicitly in (3.5) we have an ordinary differential 
equation whose solution is given by 

where fo and go satisfy (3.5) with (uo, wo) replaced by (fo,go) and the partial 
derivatives replaced by ordinary ones. The function BO(r) is determined by 

3 F L M  67 
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considering the order-e system, which from (3.1), (3.3) and (3.4) is found 
to be 

M 2 ~ 1 + a 2 T o ~ o ~ l  = a- dBON fo- B 0 c o s ~ a ~ T 0 ~ , g 0 - B 0 a 2 T 1 ~ , g 0 ,  ( 3 . 7 ~ )  

(3.7 b)  

dr 

u,-Mv, = -a-go-Bocos7f0, dB0 
d7 

where 

(3.7c) 

(3.8) 

After solving the order-eO system, we have only B, and TI as unknowns on the 
right-hand sides of the differential equations in (3.7). 

The function pair (f,, go+) adjoint to ( fo,  go) satisfies the following differential 
system : 

iVzfof +go+ = 0, a2T,Xo fof -Ngo+ = O , ]  
(3.9) 

fof = go+ = d f , f / dc  = 0, g = 0 ,1 .  

The eigenvalues a and To of (3.5) and (3.9) are identical but, as the form of the 
equations shows, ( fo ,  go) and (f,', gof ) are not the same. 

Having introduced (fof,g,') we can show that the condition that (3.7) has 
a solution is that the integral from 6 = 0 to 5 = 1 of the sum of fO+ times the 
right-hand side of (3.7 a)  and go+ times the right-hand side of (3.7 b)  is zero. (See, 
for example, Ince 1927, p. 213.) Thus we have 

which is an ordinary differential equation for B, having a solution periodic in 7 

if Tl = 0. The function B, is then of the form 

B0(7) = A exp { - (ria) sin 7>, (3.11) 

where the constant I? is given by 

= s' [a2Tox1fo+ go + soffol dC/[ rsof go -fo+ Nfol dC (3.12) 

and A is a constant, dependent on the parameters of the problem, which can only 
be determined by considering the corresponding nonlinear problem. 

0 0 

Having determined B, we can see from (3.7) that (ul, wl) is of the form 

(u1,vJ = ~0~7(f1(C),gl(C)) (fo(l)7go(C)). (3.13) 

The function pair ( f l ,  gl) satisfies the following system: 

(3.14) I NZf, + a"0 x o  9, = - TNfo - a"0 x1 go, 

fi - Ng1 = n o  -fo9 

fl = gl = dg,/dc = 0, 6 = 0 , l .  

The solvability condition at order €2 gives an ordinary differential equation for 
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uter overlap region 

nner overlap region 

FIGURE 1 .  The different regions in the disturbance velocity field for large IT. 

the function B1(7) appearing in (3.13). The solution of this equation is periodic 
in 7 if 

f’ [f,’ {Nfi + a% Xi So> + 9; {fi - r9i>] d< 
a2T - _ _  1 0  (3.15) 

2 -  3 j; X O  fo’ Sod5 

Further terms in the expansion of T can be obtained by considering the higher- 
order differential systems. It suffices here to say that, up to order c4, we can 
write T in the form 

T = To + e2T2 + e4[a2T40 + T4J + O(e6),  (3.16) 

where T40 and T42 are independent of a and are determined from tedious integral 
conditions which are to be found in the author’s thesis (1973). 

4. Linear theory for large frequencies 
We now investigate the limit in which g tends to infinity with e arbitrary, in 

which case the Stokes layer associated with the oscillatory motion of the inner 
cylinder is thin compared with the gap between the cylinders. If we let IT tend to  
infinity in (2.1) we can show that 

so that the time-dependent part of the basic flow decays exponentially to zero 
when < becomes of order d. In  contrast to this behaviour we shall see that the 
disturbance velocity field is time dependent throughout the fluid. Hence, as well 
as having a Stokes layer at the inner cylinder, the disturbance velocity field must 
also have a Stokes layer a t  the outer cylinder in order to satisfy the no-slip 
boundary condition there. As stated earlier, we refer to these layers a,s the ‘inner’ 
and ‘outer’ layers respectively, and the region between these layers will be 
called the ‘central’ region. (See figure 1.) 

- 
N I - <+ &{exp [ - (ia)* <+ k]  + exp [( - zh)t - h]}, (4.1) 

3-2 
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We first introduce the following new variables: 

[* = 1 - 5, 7* = [*(+a)&, q = [(+a)$. (4.2 a, b, c) 

Thus 7" and 7 are Stokes-layer variables for the 'outer' and 'inner' layers 
respectively. We define (u, v), ( U ,  V )  and (u*, v*) to be the disturbance velocities 
in the inner layer, central region and outer layer respectively. We again assume 
that the flow is periodic along the z axis, so that u, v, U ,  etc. are all proportional 
to cosaq5, a again being a non-dimensional wavenumber. If we neglect the non- 
linear terms in (2.3), i.e. Q1, Q2 and Q3, we can use (4.1) and (4.2) to show that the 
appropriate differential equations to determine the above pairs are 

I Y 

I - a2 - 2a2 ---%I E d  
= +x [(I +i) exp [ - q ( l  +i) +ir] + c.c.1 , (4.3 b) 

( 4 . 4 ~ )  

(4.4b) 

(4.5 b) 

where C.C. denotes 'complex conjugate' and M is defined by (3.2a). We can also 
see from (2.3) that the required boundary conditions are 

= v = au/aq = 0, 7 = 0, (4.6 a)  

(4.6b) 

and we stipulate that the perturbation velocities must match in the assumed 
regions of overlap. 

We now expand the perturbation velocities in each region in Fourier series in 
time. This is possible since we are seeking solutions periodic in T. Thus we write 

u* = v* = au*/aq* = 0, 7" = 0, 

(4.9) 

and note that the azimuthal velocity components can be expanded in a similar 
manner. In  (4.7)-(4.9) a tilde denotes a complex conjugate. The expression 
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(us, v,) represents the steady part of the disturbance velocity in the ‘inner’ layer. 
In  both the other two layers we denote the steady part of the disturbance velocity 
by the same expression (q, E). This is possible because there is no behaviour of 
Stokes-layer type for the steady part of the disturbance velocity in the ‘outer’ 
layer. However, in the ‘inner’ layer the interaction of the basic flow and the 
disturbance causes the steady part of the disturbance velocity to have terms 
proportional to exponentially decaying terms. Thus it is necessary to distinguish 
between the steady parts of the disturbance velocity in the ‘inner’ layer and 
away from it. 

Suppose that we substitute the Fourier expansions of u, w, U ,  etc., into 
(4.3)-(4.5) and equate like powers of ein7, for n = 0,1 ,2 ,  . . .; then we find that the 
equations for the central and outer functions (&x)) (Un,K) and (u:,w:), for 
n = 1’2, . . . , are not coupled. However, in the inner layer this is not the case and 
we find that 

and for n 3 2 

(4.12 b )  

The coupling of these equations arises from the terms proportional to e-v(lki) on 
the right-hand sides of (4.3). We recall that, in the absence of modulation, the 
Taylor-vortex flow was given by (f,,, go), this function pair being determined by 
(3.5).  We can show from (3.5) that  near 6 = 0 

fo , p  N a-1, go N 6 - a-4, 

and since we are again seeking a solution which is in some sense a perturbation 
from the steady problem with 8 = 0 we assume that the correct scaling for (us, w,) 
follows from the above. Hence we have 

us N a-1) 2.’, N d, 
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and this scaling for (us, w,), together with (4.10)-(4.12)) suggests the following 
scalings for (uI,fl1), (u2, v2),  etc.: 

u ~ ~ - ~  N g-h, u2, N ~ - 9 ( 5 n + 2 ) ,  ~ f ~ ~ - ~  N q-&(5,-2), v2, N q-6(5n+l)  (4.13a-d) 

for n = 1,2,  ... . Hence we expand the above functions as follows: 

,2,(, = a-1 { U ; + U ; ~ +  ...}, us = d { v ; + v ~ a - ~ +  ...}, ( 4 . 1 4 ~ , b )  

u1 = V - ~ { U ?  + u:(T-* + . . .}, (4.14 C, d )  uI = d { v ?  + W: a-4 + . . .}, 
etc. The Taylor number is expanded in the form 

T = T o + T l d +  .... (4.15) 

If the above expansions are substituted into (4.10)-(4.12) it  is found that the 
first five terms in the expansion of (us, v,) can be determined without any know- 
ledge of (ul, wI), (uz, v2), etc. Having determined these terms we find that we can 
then calculate the first five terms in the expansion of (ul, vl). These terms enable 
us to calculate the next five terms in the expansion of (u,,~,) and the first five 
terms in the expansion of (u2, w2). Continuing in this way we can determine any 
number of terms in the expansions of (u8, vs), (ul, vl), (u2, w2), etc. The essential 
details of this rather tedious process are given in appendix A.  The important 
fact which emerges from this process is that  (uI, vl), (u2, w2), etc., contain terms 
which are not exponentially small a t  the edge of the inner layer and it is for this 
reason that, unlike the basic flow, the disturbance velocity field is time dependent 
everywhere. 

In  the central region we expand (U,, V,)  in the form 

The functions of a, namely pn(a) ,  appearing above are determined by the 
matching conditions in the region where the inner layer and the central region 
overlap. In the outer layer we expand the functions u: and v: in a similar manner 
to U, and V,  but with p,(a) replaced by another function of a, namely v,(a), 
which is similarly determined by applying matching conditions, but this time 
in the region where the central region and outer layer overlap. The matching 
conditions in each overlap region also determine certain constants which arise in 
the functions uO,, etc. Of particular interest are p1 and vl, which determine the 
orders of magnitude of the dominant unsteady velocity away from the inner 
layer. We find that 

pI = a-8, v1 = a-3. (4.17a,b) 

The functions pl and vl are determined by the conditions that U, and u1 are of the 
same order in t~ in the inner overlap region and that 7Jl and u: are of the same 
order in a in the outer overlap region Fespectively. 

We now turn to the steady part of the perturbation velocity away from the 
inner layer, and this we expand in the form 

uq = { U t +  qa-++ ...}, v, = {V:+ v;a-i+ ...}. (4.18a,b) 
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Here we have assumed that Us and V,  are of order aO; this would otherwise be 
found later by applying the matching conditions. Vc'e can use (4.4)-(4.9) and 
(4.18) to show that the U: and Vi  are determined by 

(4.19) 

iV2U!+a2Tox0 VVO, = 0, 

US-NV: = 0, 

ug = v: = augpc = 0, 6 = I ,  

ug = vg = au;lag = 0, 6 = I ,  I 
The matching condition where the inner layer and the central region overlap 

is found to be that in the inner overlap region 

7 

i=o 
U~i  N C a-4i {Sl(Ai, Bi, Ci, a, To, 6) +terms proportional to Tk (0 < k 6 i ) }  

7 

Vd - adi {S2(Ai, Bi, Ci, a, To, 5)  +terms proportional to Tk (0 < k < i)} 

13a2s2B0 To 24 B, 231a2e2AOT0 24 
256 

, -2 = --a,+ where a, = 3 

32 BO 

- 25a2s2B0 To 24 
P1= 64 9 

- a2s2Co To 24 Clyl + 5a3e2C0 To coth a 
32 71 = 16 , 7 2  = c, 

Moreover S, and S ,  represent the following series: 

S, = 
Ai C5 

40 x 24 
B.C4 

C.( 
a2C3 a4C5) 

24 22 6 120 +-++ C+-+- +0(C6)), 

(4.21 b )  

(4.22 a, b )  

(4.22 c )  

(4.22 d,  e )  

(4.23 a )  

(4.23 b )  
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where A$, Bi and Ci are constants to be determined shortly. (For more details of 
the derivation of (4.21) the reader should consult the appendix.) We first note 
that (f,, go), defined by (3.5), has the following form for small 6: 

(fo7 9 0 )  = B7 '> <), B, ' 9  a> <I), (4.24) 

where A ,  B and C are given by 

A = 4 x 2&f{(O), B = f/(O), C = 2:gh(O). (4.25a,b,c) 

A prime denotes a derivative with respect to 5, and X, and S ,  are defined by 
(4.23). Hence if we choose (U:, Vf) = (f,, go), (4.19) is automatically satisfied and 
if we put A ,  = A ,  B = B, and C = C,, then Uz and Vf are of the form required 
by (4.21), where the central region and inner layer overlap. Similarly if we put 

q = 0, (u:, V2) = (C,/C,) ( f o 7 g , ) ,  i = 1,2, . .., 5 ,  

then the next five terms (Ui ,  V:) satisfy (4.20) and are of the form required by 
(4.18) and (4.21) where the central region and the inner layer overlap. With the 
above choices for TI, T,, etc., we can show that (Uz,  Vz)  is determined by 

N 2  Uz + a2To xo V,G = - aZT, xo go, (4.26 a )  

U ' ~ - N V ~  = 0, 
with boundary conditions 

(4.26 b )  

UG, = v: = dU2/d< = 0, 5 = 1. (4.27) 

In addition, from (4.18) and (4.21) we require that in the inner overlap region 

a2yl C5 aW, T6 c5 
120 120x2: +-- +(I(<),, (4.28a) 

The above series are just the small-5 series solutions of (4.26) with boundary 
conditions 

u: = 0, v: = yl ,  dU,6/d< = 4 2 6 ,  < = 0. (4.29) 

Therefore, if we consider (4.26) with boundary conditions (4.27) and (4.29), the 
solution will automatically satisfy the requirements on (Uz, V!) away from the 
'inner' layer and for some A,, B, and C, will satisfy (4.28). Thus the problem 
reduces to solving (4.26) subject to (4.27) and (4.29). In  fact, since we are only 
interested in finding T6, we merely use the condition that this system has a 
solution; this gives 

a2T6 = r,so+'(O) + alW:"(O) 
7 
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where (f,’, go+) is the adjoint function pair defined by (3.10). Using (4.22) and 
(4.25)) we can show that the above expression can be written in the form 

7 (4.30) 
T6 = @To 13fO”(O)fo+”(O) - 4gXO) gO+‘(O) 

32f 0 xofo+ god< 

and a similar procedure for the order-a-8 terms in (4.18) and (4.21) shows that 

T7 = @To 40acothag~(O)g,”(O)+ lOOf~(O)fo+”’(O)+77f~(O)f~”(0)~ (4.31) 

128x 2 ~ f l x o f o + s o d <  0 

Then q, T,, etc. can be obtained by a similar method if more terms in the expan- 
sions of the perturbation velocities are evaluated. However, we have seen that, 
to order r4, T may be written in the form 

T = To+T6a-3+T,~-H+. . . ,  (4.32) 

where T6 and T, are determined by (4.30) and (4.31) respectively and To is the 
Taylor number for the steady problem with e = 0. 

5. The numerical work 
If we wish to obtain the critical number T,  associated with (3.16)) we must take 

into account the variation of a with E near its critical value for the problem with 
E = 0. A calculation similar to the one given by Venezian (1969) shows that, if 
this effect is taken into account, T, is given by 

where T;, etc., denote To, etc., evaluated with a equal to a,, its critical value for 
the problem with E = 0. Similarly the critical Taylor number associated with 
(4.32) is given by 

T, = Tg + Tg/a3 + T $ / d  + O ( r 4 ) .  ( 5 . 2 )  

All the computations were for the critical case, and as a starting point, we 
assumed the following well-known values of ac and Tg: 

ac = 3-1266, TG = 3389-9. 15.3) 

The ordinary differential systems arising in $5 3 and 4 were solved by a Runge- 
Kutta scheme with 40 steps following the method outlined by Eagles (1971). 
The solutions for ( fo, go) and (f,’, 9,’) were in good agreement with those of DiPrima 
85 Stuart (1972), when normalized in the same way. The computations showed 
that the constant I?, defined by (3.12)) has the numerical value - 26.18 and that 
(5.1) and (5.2) are expressible in the form 

T, = 3389.9 - 2 0 8 . 6 ~ ~  + 1.7a2a2 + O(e4, c2a4), (5.4) 

( 5 . 5 )  
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In  (6.4) we have replaced CL by V I E .  We see immediately that the first and second 
correction terms in (5.4) and (5.6) produce destabilizing and stabilizing effects 
respectively. 

These formulae do not overlap in CT, and do not give the pronounced stabiliza- 
tion found by Donnelly ( 1 9 6 4 ) .  One possible remedy is to discuss the nonlinear 
aspects, and this we do in the next section. 

6. Nonlinear theory for small frequencies 
If we replace 

notation we obtain 
in ( 2 . 3 )  by its asymptotic form for small v and drop the star 

( 6 . 1 ~ ~ )  
a2v I aZQ 1 a2Q2 

(9 - C T ~ )  9 u  = T(xo + ex1 cos 7 + €ax2 sin7 + . . .>- - - a p  2 aq52 +s mag? 
( L Z - ~ a / a 7 ) v  = ( 1  + c c o s ~ + t w ~ ~ s i n ~ +  ...> u-&Q3, (6 .1  b )  

au/a<+ awiaq5 = 0, (6.1 c )  

where the functions xi  and q5i are defined by (3 .2b ) .  The relevant boundary 
conditions are 

u = v = w = o ,  p = o , 1 .  ( 6 . 2 )  

Following the method of $ 3  we seek a solution of the above partiaf differential 
system by letting e tend to zero with cr/e fixed and equal to a: say. We expand 
u, v, w and T in the form 

T = To+eTl+ ..., ( 6 . 3  a )  

where 

+ 0(c2), ( 6 . 3  0) 
w21 sin aq5 w23 sin 3aq5 

UOI = ( :::), etc. 

WOl 

are independent of q5 and a is again a non-dimensional wavenumber. This 
expansion procedure is the same as the one used by DiPrima & Stuart (1973), 
who considered the stability of the flow between eccentric rotating cylinders. 
Indeed much of the analysis of this section is related to their work. The €4 scaling 
factor in ( 6 . 3 b )  follows from ( 6 . 3 ~ )  and the usual argument that, if T is slightly 
greater than To, the amplitude of the disturbance is then proportional to (T - To)*. 

We define Lp by 

- a2/ac2 + p2a2 
p2a2ToXo 0 Pa 

Lp = 
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where p is a non-negative integer and L: is defined to be Lp with the partial 
derivatives replaced by ordinary derivatives. If we replace r~ by C L ~  in (6.1), 
substitute for u, v, w and T from the above into (6.1) and (6.2) and equate terms 
of order €4, we obtain 

LlU,, = 0, (6.4 a) 

uol = 0, 6 = 0, I .  

We can write the solution of this system in the form 

(6.4 b )  

uo1 = A(7) (6.5a, b,c) 

where f, and g ,  are defined by (3.5). If we now substitute for u, v, w and T from 
(6.3) into (6.1) and (6.2), equate terms of order E and use (6 .5 ) ,  we obtain ordinary 
differential systems for u,, and u12 whose solutions may be written in the form 

and 

f3  = g3 = h, = 0, 5 = 0 , l .  (6.9 b )  

Substituting for u, v, w and T from (6.3) into (6.1) and (6.2), equating terms 

-a (dA/d7)y , -Af , c0s7+A3G1(~)  3F(c7, ( 6 . 1 0 ~ )  

UZ1 = 0, 5 = 0 , 1 ,  (6.lOb) 

of order €8 and using (6.5)-(6.7), we find that u,, is determined by 

~ ( d A / d ~ ) N f , - A a ~ T , ~ , g , c o s ~ - A a ~ T , ~ , g , + A  , 
0 ( L,u,, = 

where the functions PI(<) and GI(<) are defined by 

(6.11 b )  
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and the operator N ,  arising from (3.12), is defined by (3.8). When p = 1 a differ- 
ential system of the type (6.10) only has a solution when a certain orthogonality 
condition is satisfied. In  this case we can show that the required condition yields 
an equation for A(T) ,  namely 

01dAld.r = - r{cos7+T,/2T0}A +a,A3,  (6.12) 

where I' is given by (3.12) and has the numerical value - 26.18. The constant a, is 
defined by 

a, = J; (fit 4 + 9 2  G1JdC/I1 (9; 90 - f o f  W O P L  (6.13) 

where (f;, g:) is the adjoint function pair defined by (3.9), and F, and G, are as 
defined by (6.1 1). The constant a, is in fact related to the constant a, introduced 
by Davey (1962) as follows: if we choose the function pair ( f O , g o )  equal to the 
function pair (El, w,) of Davey's work, then 

a - 1- 1 - 8% 

0 

while the functions F,, U, and v, introduced by Davey are given by 
- - 

F1 = -492, 212 = -493, U, = -4f3. 

Davey's numerical work shows that, with go(+) = 1, a, has the numerical value 
- 10.05. 

Finally, suppose that the outer cylinder is at  rest and that the inner one has 
angular velocity Q,{1 + ef(wt)}. Then, for small (T, the dimensionless velocity 

and the method described above leads to the following equation for the corre- 
sponding amplitude function A (7) : 

a dA/& = - I?{ f (7) + T,/2T0} + a, A3. (6.14) 

Here u1 and r are as defined earlier. 
It has been pointed out to the author by one of the referees that an alternative 

approach to the problem is as follows. For any given value of T, and any function 
f ( 7 )  of r we can definef"(7) by 

f * ( 7 )  = f +  T,/2To, (6.15) 

and then (6.14) can be written in the form 

01 dA/dr = - rf*(7) A + u,A3. (6.16) 

This equation is the one which would be obtained by setting T, = 0 initially and 
absorbing any order-€ correction to T from To into the function f ( r ) .  However, 
our approach is more heIpful in that if we set f (7) = 0 the method reduces to the 
usual type of stability analysis. Also our approach is similar to that used by 
DiPrima & Stuart (1973), so that using this approach enables us to see the 
equivalence of the problems more easily. 



The stability of unsteady cylinder flows 45 

Equation (6.14) is a ' Bernouilli' type equation and, if we use the usual substitu- 
tion for such equations and use A-2 as a variable, we can show that 

where @ is defined by 

(6.17) 

(6.18) 

As a special case we put f(7) = tanhr, in which case the speed of the inner 
cylinder changes slowly from Q( 1 - E )  at T = - 00 to Q( 1 + E )  at T = + 00. We can 
see from (6.14) that, as we would expect, this equation admits an equilibrium 
amplitude solution as T -+ co which is just the equilibrium amplitude solution for 
the steady problem with the Taylor number based on the final speed of the inner 
cylinder. 

We return now to the special casef(7) = COST and note that (6.17) contains an 
unknown constant A(0) .  We now invoke the condition that A should be a 
periodic function of 7. This determines A(0)  and we can then write A(T)  in the 
form 

where ~ ( x )  = e x p s ( 2 s i n s + Q ) .  
a TO 

In general this form cannot be simplified further; we can however consider a 
second limit, with respect to Tl/To or a. Thus, in the limit in which Tl/To tends 
to infinity with a fixed, we can use (6.19) to show that 

A (7) N ( rTl/2ul To)+ { 1 + O(Tl/T0)-l}. (6.20) 

The dominant term on the right-hand side of (6.20) corresponds to the equilibrium 
amplitude solution for the unmodulated problem with the same Taylor number. 
Thus as the flow becomes more and more supercritical the effect of modulation 
becomes unimportant. 

In  a similar manner we can show by taking the second limit a -+ 00 with Tl/To 
fixed that 

A(T)  - (~Tl/2alTo)*{1 +O(a-l)}. (6.21) 

The dominant terms on the right-hand sides of (6.20) and (6.21) are the same so 
that we conclude that for E and (T small but a/s  large modulation has a negligible 
effect on the equilibrium amplitude. 

Suppose now that we consider the limits of small T,/To and a. We investigate 
the result of taking the second limit Tl/To-+O and then the further (third) limit 
a+ 0. If we let Tl/To tend to zero in (6.19) with a held fixed we obtain 

(6.22) 
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FIGURE 2.  Amplitude as a function of r for small u and T,/T,. 

where I. is a modified Bessel function of zero order. If we now let a tend to zero 
in (6.22) we obtain 

The 7 dependence of A(r )  is then similar to that of B0(7) obtained in the linear flow 
frequency theory of $ 3 .  We can see from (6.23) that A(7) then has its maximum 
value at  r = in. It is also of interest to note that the average torque on the inner 
zylinder associated with the dominant term in (6.23) is independent of a. We 
show A as a function of 7 for small a and Tl/To in figure 2 .  

7. Nonlinear theory for large frequencies 
We now investigate the possibility of the existence of equilibrium perturba- 

tions of small but finite size in the limit in which a tends to infinity but with 
c: arbitrary. We consider only the case when the inner cylinder has angular 
velocity Q,{ 1 + e cos at> and so we can seek periodic solutions from the outset. 
Thus we can Fourier analyse in wt and use the method of 3 4. 

We recall that, in the linear theory of $4, the effect of modulation in the 
‘central’ region first appears a t  order a - 3  in the expansion of the steady com- 
ponent of the perturbation velocity in powers of d, when the dominant term 
is of order go. Hence we perturb the Taylor number in the form 

in order that the effects of modulation and nonlinearities appear at the same 
order when we expand in powers of a-8. It is important at  this stage to distinguish 
between TA, given in (7.1)’ and T,, introduced in $ 4 .  We recall that T, is the 

T = To+ TJc++ O(a-z), (7.1) 
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coeEcient of the order-u-3 term in the expansion of the critical Taylor number 
in powers of c-4, whereas Ti is determined by (7.1) for any given value of T. 
The flow is stable or unstable according to linear theory depending on whether 
Ti is less or greater than T6. 

As stated earlier in $ 6  we know that without modulation the Taylor-vortex 
velocity field is of order (T-To)* when T is slightly greater than To. Thus we 
expect that the dominant steady fundamental velocity in the central region 
should be of order u-8. The linear theory of $ 4  then leads us to the following 
expansion for u, v and w in the central region: 

e2ir 

+c.c.+- 04 

v,l 
U% U4 

...+-[ eir  v:+-+ ...I 
I e2ir 

+c.c.+- + c . c . + 0 ( r 6 )  cosaq5, (7.2b) 
Id 

e2ir 

+ c . c . + s  

where C.C. denotes ‘complex conjugate’. However, if we let u tend to infinity we 
see from (2.1) that, away from the inner layer, 

7- 1-5. (7.3) 

Expansions (7.2) are clearly no longer suitable if we wish to retain the nonlinear 
terms Q1, Q, and &, in (2.3). In  order to take these nonlinear effects into account 
we modify these expansions to give 

u1 1 L e i T [  UP a3 u: 1 04 [ d 

e2ir U1 
u = u-8 U t + d +  ...+- u:+-+ ... +c.c.+- ug+2+ ... 

-t C.C. + O(a-5) cos a# + a4  I 
U ; 2 + s + . . .  cos2aq5 +O(c-Y), (7.4a) 

u12 1 I 

cos2a4 +O(cr-Y), (7.4b) 1 I 
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where the terms in these expansions with three indices are produced by nonlinear 
interactions. 

From now on we shall use the words fundamental, mean, first harmonic, etc. 
with reference to the 4 dependence only. The nonlinear interaction of the steady 
fundamental components of velocity with themselves leads to the steady mean 
and first-harmonic terms of order a - 3  in the above expansions. The nonlinear 
interactions involving the unsteady fundamental terms produce steady and 
unsteady mean and first-harmonic terms which are at most of order a*. Since 
we shall consider terms only up to order at, these terms are negligible for our 
purposes. The dominant steady mean and first-harmonic terms produced by the 
interaction described above interact nonlinearly with the dominant steady 
fundamental terms to produce steady fundamental terms of order at. Similar 
terms are produced by the nonlinear interaction of the order-a* terms with 
themselves and the other terms in the above expansion, but these terms will be 
at most of order a*, and so negligible. Thus we see that in the ‘central’ region 
the steady fundamental terms up to order a-Z are unaffected by any nonlinear 
interactions involving unsteady terms. 

We recall that in the high frequency linear theory of 5 4 the steady part of the 
perturbation velocity away from the inner layer had no Stokes-layer type of 
dependence, i.e. contained no exponentially decaying terms in the outer layer. 
This was in contrast to the steady component in the inner layer, which contained 
exponentially decaying terms caused by the nonlinear interaction of the time- 
dependent parts of the basic flow and perturbation velocity in this layer. A similar 
nonlinear interaction between the unsteady parts of the perturbation velocity 
with themselves in the outer layer leads to similar terms in the steady perturba- 
tion velocity in the outer layer if the terms Q1, Qz and Q3 in ( 2 . 3 )  are retained. 
Hence we must distinguish between the steady fundamental components in the 
‘central’ region and the ‘outer’ layer. However, we can show that in both the 
‘inner’ and ‘outer’ layers the residual steady fundamental components of 
velocity a t  the edges of these layers are first affected by nonlinearities at  order 
(r+ (when the dominant steady fundamental component is of order d), and 
the effect is independent of the nonlinear interaction of the unsteady parts of the 
perturbation velocity. Thus the first-order nonlinear correction to the linear 
theory of $ 4  is independent of the time dependence of the basic flow. 

Having said this the solution of the problem becomes trivial since all the 
information which we require is embedded in $54 and 6. If we substitute for 
u, v and w from (7.4) into (2.3) (with = 1 - f;) and equate steady fundamental 
terms of order (r-g we find that the vector (U!, V:, Wg) satisfies the differential 
equations in (6.4). The matching conditions in the inner and outer overlap regions 
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require that (U:, V:, W:) there match onto the small-t; and small-( 1 - t;) series 
solutions of these equations with the boundary conditions that this vector 
vanishes at 6 = 0,1 respectively. Thus we can write 

(7.5) 

where ( f o , g o )  satisfies (3.5) and AO, is an unknown amplitude constant to be 
determined. In  a similar manner we can show that for n = 1, 2, . . . , 5 

cu:, v:, V )  = AWO, go, - .-l df,/dC), 

(UP, VP, WP) = AP(f0, go, - .-l 4fo/d5), 

and similarly we can show by considering the mean and first-harmonic terms of 
order that 

( 7 . 6 ~ )  

(7.6b) 

where the functions g,, f3, 9, and h, are determined by (6.8) and (6.9). If we 
substitute for u, ZI and w from (7.4) into (2.3) and equate steady fundamental 
terms of order a-Q we obtain 

(U?, yoso, JC0) = ( 4 ) 2 ( o , 9 2 ,  O), 

(U?, v, T?) = ( -432(f3,  9 3 ,  h3), 

where E; and G, are given by (6.1 1). The matching condition in the outer overlap 
region requires that (U:, V:) there matches onto the small-( 1 - t;) series solution 
of (7.7) with boundary conditions 

u: = V,B = dU,"/d< = 0, [ = 1.  (7.8) 

Without modulation the corresponding condition in the inner overlap region 
would be that (U!, V,") there matches onto the small-5 series solution 
with the conditions (7.8) at t; = 0. However, with modulation the nonlinear 
interaction of the basic flow and the disturbance in the inner layer affects the 
matching conditions in a similar way to that observed earlier in § 4. 

An analysis shows that, if modulation is taken into account, the boundary con- 
ditions at 5 = 0 are the conditions appropriate for (Uf ,  V:) in the high frequency 
linear theory of $4 .  Thus we require that 

and so U: and V," are given by the solution of (7.7) with boundary conditions 
(7.8) and (7.9). The condition that this system has a solution reduces to 

where (f;, g$) is the adjoint function pair defined by (3.10), and xo = 1 - t;. The 
4 F L M  67 
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FIGURE 3. The critical Taylor number as a function of t~ in the 
low frequency limit. 

terms in this equation are more recognizable after a few substitutions. We can 
use (3.12), (4.30) and (6.13) to show that 

(7.10) 

where a, is given by (6.13) and I? and T6 are given by (3.13) and (4.30). If (7.10) 
is to have a real solution we require TL >, T6, so that (7.1) indicates that finite 
amplitude perturbations can exist only when T is greater than its critical value 
in the linear theory of $4. 

8. Discussion of results 
We have seen that the critical Taylor number at which instability first occurs 

in the limit in which E and (T tend to zero is given by (5.5). Thus the dominant 
correction to T, from its unmodulated value is negative, suggesting destabiliza- 
tion. However, for fixed E ,  T, increases as (T increases from zero and this is con- 
sistent with Donnelly’s work. In  figure 3 we show the variation of T, with (T for 
fixed values of E .  We have also calculated the terms of order e4 and e2u4 in (5.5). 
The former term is about - 1300, whilst the latter is zero to two decimal places. 

In the limit in which (T tends to infinity T, is given by (5.6). We again see that 
the first and second correction terms suggest destabilization and stabilization 
respectively. Thus in both limits the first correction term, in contrast to the 
second, is not consistent with Donnelly ’s results. We show the variation of T, with 
(T& for fixed E in figure 4. It should be said that, although modulation is usually 
thought of as having a stabilizing effect, other mechanical systems can be made 



The stability of unsteady cylinder jlows 51 

fJ* 

10.0 20.0 30.0 40.0 50-0 
I I I 

I V 
FIGURE 4. The critical Taylor number as a function of LT* in the 

high frequency limit. 

less stable by modulation. For example a simple pendulum hanging vertically 
can be made unstable by suitably oscillating its support. (See Corben & Stehle 
1960, p. 67.) Also Benjamin & Ursell (1954) have shown that oscill-ating a vessel 
containing fluid can cause the fluid surface to become unstable. 

We should also comment that the methods used in €J€J 3 and 4 can also be used 
for the related Benard convection problem considered by Venezian (1969) and 
Rosenblat & Herbert (1970). Our results for the low frequency problem differ 
from those given by Venezian (1969). However, Dr Herbert, at  Imperial College, 
in some unpublished work using a Galerkin method, obtained our result, thus 
giving reinforcement to the present work. For details of this problem the reader 
should consult Hall (1973). 

In  view of the disagreement of linear theory and experiment we must discuss 
the experimental work of Donnelly (1964) in more detail. As stated earlier, he 
considered the flow between concentric cylinders when the outer one is a t  rest 
and the inner one has angular velocity Q{ 1 + t: cos wt}. Before going further, we 
first summarize the important features of the stability of the unmodulated 
problem. 

When the outer cylinder is at rest and the inner one has angular velocity Ql, it 
can be shown that the flow first becomes unstable when the Taylor number 
reaches the value 3389-9. For T slightly greater than this value the nonlinear 
theory of Davey (1962) shows that equilibrium perturbations to the flow can 
exist. The amplitude of the velocity of the Taylor-vortex flow is then proportional 
to (T - To)*. It can also be shown that such equilibrium amplitude flows cannot 
exist for T less than To. Thus for T less than To the amplitude of the Taylor-vortex 
flow is zero, and when T reaches the value To the amplitude begins to grow like 
(T - To)*. 

With this in mind, Donnelly defined the critical Taylor number to be that value 
for which a slight increase in Q caused the amplitude of the Taylor-vortex flow to 

4-2 
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FIGURE 5 .  A as a function of Tl/To. ---, value of A for the unmodulated 
problem with the same Taylor number. 

increase rapidly. With this definition of the critical Taylor number he found that 
the flow was stabilized for all E and u in the sense that the critical Taylor number 
was always greater than To, the maximum enhancement for all E occurring when 
the parameter u took the value 0.27. 

We now see whether the low frequency nonlinear results can explain the 
discrepancy between theory and experiment. The first difficulty which we must 
overcome is to decide which property of the time-dependent amplitude was 
actually measured by Donnelly in his experiments. A relevant property of A 
might be its mean value 3 defined by 

We note from $ 6  that A is known only in integral form. Thus A and 3 must be 
evaluated by an integration routine. In figure 5 we show 3 as a function of TJT, 
for different values of a, in comparison with the corresponding equilibrium 
amplitude for the unmodulated flow at the same Taylor number. We see that, 
as suggested by (6.23), the effect of modulation vanishes as a tends to infinity in 
the sense that the curves tend to the equilibrium amplitude solution for the 
unmodulated flow. Since all the curves lie below Davey's curve we see that 
modulation stabilizes the flow in the sense that the value of for given values 
of a: and T,/To is always less than its unmodulated value. However, unlike the 
results of Donnelly, our results show no optimum value of a: and hence u for 
a given value of E at which the enhancement of stability is most pronounced. The 
enhancement of stability shown in figure 5 decreases as a increases. In figure 6 we 
show the results of our low frequency theory in a form more suitable for com- 
parison with Donnelly's figure 5.  We see that there is poor agreement between our 
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FIGURE 6. Comparison with Donnelly’s results for E = 0.08 and a period of 46.1. 
--- , Davey’s equilibrium amplitude solution ; , Donnelly’s experimental curve ; 
-, A given by low frequency theory. (All amplitudes are normalized by division by A,, 
the amplitude at  R = 5.8 without modulation.) 

theory and Donnelly’s results. This is perhaps due to the fact that A may not be 
the relevant property of A(r )  as far as his results are concerned. 

A more promising method of experimentally checking our low frequency 
results may be to try and obtain the behaviour of A as a function of r.  This could 
perhaps be obtained by measuring the difference of the torque per unit length on 
the inner cylinder from its laminar value, a quantity which is proportional t o  
AZ(r). We show A2 as a function of r for various values of a and Tl/T, = 0-5 
in figure 7 .  

In  the limit in which CT tends to infinity with F arbitrary, we note that the 
amplitude of the dominant steady fundamental component of the perturbation 
velocity is given by (7.10). I n  view of the scaling in (7.4) the physical amplitude A 
of this component is d A : .  If F = T6 = 0 we can show that A becomes the equi- 
librium amplitude solution A ,  for the problem without modulation a t  the same 
Taylor number. We can show that 

A - A ,  = - I’T6/2a1(A + A E )  ~ 3 ,  

thus we can see that as the flow becomes more and more supercritical, in which 
case A and A ,  both increase, the difference between them decreases. I n  figure 8 
we have sketched A as a function of T for different values of F .  

I n  contrast to the low frequency results we see that the average amplitude of 
the Taylor-vortex flow grows quite rapidly as soon as the critical Taylor number 
of linear theory is reached. Since T6 is negative, we conclude that in the high 
frequency limit modulation destabilizes the flow. 
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FIGURE 7. AZ as a function of T for TJT,  = 0.5. ---, constant value of*A2 for the 
unmodulated problem with the same Taylor number. The difference G in the torque on 
the inner cylinder from its laminar value, for this value of TJT,,, can be shown to be given 
by c f  = [27~R1R:p/(R, - R,)] x 0.037A2a. 
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FIGURE 8. The amplitude A ax a function of T in the high frequency limit. - - -, ampli- 
tude for the unmodulated problem for the same Taylor number. (All amplitudes are 
normalized by division by A,, the amplitude a t  T = 3400 without modulation.) 

Following a suggestion by Professor J. Mahony an alternative approach to 
this problem has now been formulated for the limits of small e and e/cr. The 
method is essentially that of Venezian (1969) and we just expand the perturba- 
tion velocity in powers of e.  By taking the further limits cr --f 0 and v -+ co we 
recover the results of $5 3 and 4. At intermediate values of F we again find that 
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the flow is destabilized. This work can be found in appendix B, which was added 
to this paper at  the proof stage. 

The author wishes to acknowledge the receipt of a Science Research Council 
maintenance grant and the help and guidance given by Professor J. T. Stuart a t  
Imperial College. 

Appendix A 
Here we consider in more detail some of the functions which appeared in 0 4 

but were not given explicitly there. We consider first the terms which appear in 
the expansions of the inner-layer Fourier coefficients us, us, ul, vl, etc. We recall 
that these functions of q are determined by (4.10)-(4.12). The appropriate 
boundary conditions are obtained by substituting the expansions (4.7) into 
(4.6 a )  and equating terms proportional to einr for n = 0,  I ,  2, . . . . If we substitute 
the expansions (4.14) into (4.10) we see that the first five terms in the expansions 
of us and v, can be found by equating terms of order o-", d, r1, g-9 and r2 and 
solving the resulting differential equations subject to the appropriate boundary 
conditions. We can then write us and vs in the form 

u ,  = g-1 {B,72+d[Blq2+A,q3]  +a-l[B2r-2+Alr3+Qa2Bor4] 

+ a-%[~,y2 + ~ ~ 7 3  + ~ a 2 ~ , 7 4  + * u ~ ( A ,  - +c,P,) 751 
+ r2[B4y2+A3y3+ gu~B2q4+~a2(A,-QC1T,)q5 

+&a2(a2B, + $ x 2%',T,)q6] + O ( d ) } ,  

+a-%[C,q + + u 2 ~ ~ 7 3 + + ~ , q 4 ]  +r-2[c4y + ~ a 2 ~ , 7 3 + ~ ~ ~ q 4  

+iL,(A,++a4Co)75] + O ( d ) } ,  (A 1 b )  

(A l a )  
v, = g-4  {Coy + d C 1 q  + a-1[C27 + *u2C0q3] 

where A,, B,, etc., are unknown constants which are to be determined later. For 
the sake of brevity we have put Tl = 0 in order to evaluate (A 1). The vanishing 
of Tl would otherwise be found later. Knowledge of the first five terms in the 
expansions of us and v, enables us to evaluate the first five terms in the expansions 
of u1 and vl. If we substitute for u1 and v1 from (4.14) into (4.11) and equate terms 
of order go and (~-4 and use (A I )  we obtain differential equations which when 
solved subject to the appropriate boundary conditions enable us to write u1 and 
v1 in the form 

- - c - z  '{(Po + d PJ [e-v(l+i)- 1 +?(I + i)] 
-1 8a 2 e[Co To + d C 1  To] [2( 1 + i) 72e-l(l+i) + i 07 e-v(l+i) 

v1 = d{%& x 2 * e ( ~ ,  + a - 4 ~ ~  e-v(1+0(473 + 372 - 3i72 - 3i7) 

+ 5( 1 - i) (e-l(l+i)- I ) ]  + O ( r l ) } ,  (A 2 a )  

--L 3 2  x 2~A,e~-g[e-71(l+O(4q4 + 4( 1 - i)y3 - 6iy2 - 37 - 3iq)]+ O ( r l ) } ,  (A 2 b )  
where Po and Pl are constants to be determined; exponentially increasing func- 
tions of 7 have been rejected. In  order to calculate Po and Pl we must consider 
the flow away from the inner layer. 
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To this end, we recall that in the central region and the outer layer there is no 
coupling of the differential equations for the Fourier coefficients in the expansion 
of the perturbation velocity. We first consider the central region. Suppose that 
we substitute for U and V from (4.8) into (4.4), equate terms proportional to eir 
and take U. and V, as given by (4.16) with n = 1. We can equate like powers of 
CT-4 and solve the resulting differential equations to obtain 

U, = pl{B! sinh ac* +A! cosh a<” 

+ a-*[B,1 sinh a<* + A: cosh ac*] + O(CT-~)} ,  (A 3 a) 

v, = ( - UJiCT) (1 + O(u-l)], (A 3b) 

where A! and B!, etc., are constants to be determined. A similar procedure in 
the outer layer shows that 

(A 46) 

where C! and C: are for the moment unknown constants. Again exponentially 
increasing functions of 7” have been rejected. 

It now remains to match (A2) and (A3) where the central region and inner 
layer overlap and (A 3) and (A 4) where the central region and outer layer overlap 
We can easily show that the conditions in the region of overlap of the outer layer 
and central region reduce to 

p1 = usv17 

and the conditions in the other overlap region reduce to 

p1 = u-g, Po = 0, 

B! = 5azeC0 To/4( 1 + i) sinh a, 

PI = - 24 x 5a3eC0 To coth a/%, 

a 2* P2 = - 24 x 5a2e 
“$l2; 

181 tanh a - - (1 +;) P,tanha. 

If it is required to calculate T to higher order it is necessary to calculate u2, v2, etc. 
However, the method follows closely the one described above. If the above 



T h e  stability of unsteady cylinder flows 57 

expressions for Po and Pl are substituted into ( A 2 )  we can calculate the next 
two terms in the expansion of u, and v,. 

U: + v-*u: = [ B ~  + C-*BJ 7 2  + [A + ~ - * A ~ I  73 + +a2p3 + ~-*B,I 73 

+ +a2[A, + r 4 A 3  - C, To - d C 3  T,] 75 

+-&aiiaZ{a2Bl + ~ C L ~ B ,  + Q x 2*(C1 To + d C , T 0 ) } 7 6  

+ &a4{A + d A  1 - 4 (Co To - v-*C, To)} 7' 

+ &a~-*a2B0{a4 - $To} 78 

+ &a2@(BoTo + d B l  To) 28{e-27[473 + 27r2 + 727 + 751 

+ 787 + 75)  + y ~ 6 a 2 ~ Z A O T 0 2 * { e - 2 ~ [ 4 ~ 4  + 36q3 + 14472 

-I- 2977 + 2641 + 2317 + 264}, 

v," + = [c5 f dc ,]  7 + 4a4[c3 + d C 4 ]  T3 + i[Bz + d B 3 ]  V4 

+ ,+[A1 + 4a4C1 + d ( A z  + +a4C2)] 7 5  + &&B0 + d B 1 ]  76 
- ~ ~ a 2 ~ 2 [ C o T o + d C l T 0 ] 2 * { e - 2 ~ [ 2 ~ Z + 9 ~ + 8 ] -  1 0 c o s 7 e - ~ + 2 }  

+ r*{&a2[Ao + +a4CO - go To] 7' + &u3eE"CO To coth a[e-27 

- 2e-7( 3 cos 7 - sin 7) - 47 e-7 cos 7 + I]}, 
where A,, etc., are unknown constants and for convenience we have put 
T, = T3 = 0. The vanishing of these quantities would otherwise be found from 
the matching conditions. If we calculate a few more terms in the expansions of 
u, and v, it  is easy to deduce the matching condition (4.21). 

Appendix B 
We now describe briefly an alternative formulation of the problem in the limit 

E + 0. Suppose that the disturbance (u, v, w) imposed on the flow is small enough 
for linearization to be a valid procedure. If the disturbance is periodic along the 
axis of the cylinders with wavenumber a then the appropriate form of (2.3) is 

u = v = au/ag = 0, g = 0, I ,  

where f = sinh (ia)* ( 1  - <)/sinh (icr)*, 

and the boundary conditions shown stipulate that there is no fluid motion rela- 
tive to the cylinders, which, in terms of g, correspond to 5 = 0 and 5 = 1. 

Following Venezian (1969) we expand u, v and T in the form 

u = uof€u1+€~U,+ ..., 
v = vo+ev1+€~vz+ ..., 
T = TO+c2Tz+e4T4+ ..., 



58 P. Hall 

where we have anticipated that Ti = 0 for i odd. This is because changing E to 
- E does not alter the physical problem under investigation. We can substitute 
from (B2) into (B 1)  and equate terms of order eo and E respectively to show that 

b0.01vo) = A(f0, go), (Ult V l l  = eiT(fll, 911) + +Ae--iT(J;17 Qll), (B3a,  b)  

where (fo, go) and (f,,, gll) are determined by 

(B 4) 1 NYO +a2T0xogo = fo- Ngo = 0, 

fo = dfo/dC = go = 0, 6 = 0, 1,  

N ( N  - i(T)fll+ a2T0Xo911 = - a2Togof, 

( N  - i 4  911 -f11 = -fodf/dC, 

fil = dfii/dC = 911 = 0, 

(B 5) 1 C = 0, 1. 

The operator N is defined by 
N = d2/dC2-a2, 

and A is a constant which cannot be determined within the framework of linear 
theory. At order €2 we find that (u2, v2) is expressible in the form 

036) 1Ae-2i~ 
( ~ 2 ,  ~ 2 )  = W 2 i 7 ( f 2 2 9  922)  + 8 (J",2,9"22) + (f20, 9201, 

and the integral condition that the differential system determining ( f20, g,,) has 
a solution gives 

Here (f$ , go+) is the function pair adjoint to (fo, go) and is defined by 

N2fof +go+ = Ngof -a2To xo f$ = 0,} 

The systems (B4) and (B 8) are independent of (T and therefore need only be inte- 
grated once. However, (B5) and (B7) depend on (T and so must be integrated 
separately for each value of (T. The results of such a procedure are given later. 
We now show how the results of $3 3 and 4 can be recovered by taking the further 
limits (T --f 0 and (T + 00. 

(B 8) f o +  -df,+/dC = gof = 0, 5 = O , 1 .  

The fwrther limits (T --f 0 and a +- co 
In  $ 3 we saw that in the limit E + 0 with c / e  fixed we can express T in the form 

T = T, + € 2 ~ ;  + EWT; + 0 (€za4, €4), 039) 

and when To hasits critical value, 3390, we have that TZ = - 208.6 and T: = 1.7. 
Suppose that we expand (fll, gll) in the form 

(fll, 911) = @(@l? W l l )  + ( 4 1 > 2 4 1 )  + dU?l, V?1) + . . . 3  (B 10) 

then by substituting this expansion into (B5) with f expanded for small (T, 

we can equate terms of order (T-~, (TO and (T respectively to show that 

(fll,  911) = ia-l FfO, rgo) + (fl + rlfo, 91 + rig,) + O ( 4 .  



The stability of unsteady cylinder flows 59 

Here (f,, gl) and r are as defined by (3.14) and (3.12) and rl is defined by equation 
( 3 . 3 . 1 9 ~ )  of Hall (1973). If we take (f,,, gI1) as shown above and expand f for small 
(T in (B 7)  we can show that 

-;I”, ~ f o i ~ ~ ~ f l + ~ 2 ~ o X o g l l + ~ , + ~ f l -  ~Sl l ldc+O(a2)  

poi XoSodC 
u2T2 = (B 12) 

and the dominant term above is just the term a2TZ of $ 3. Similarly the order-+ 
term in (B 12) can be shown to be the a2Tzof $ 3. Thus we can recover the results 
of $ 3  by taking the further limit (T + 0. However, the velocity field obtained 
above is not identical to that found in $3. In order to see why this is so we first 
note that the first-order correction to the unmodulated Taylor-vortex flow ob- 
tained above is of order e / c 7  equal to a-1 say. Thus our analysis is restricted to 
a 9 1 in contrast t o  $3, where we had u - E .  However the results for a 9 1 can 
be found from $3 by taking the limit a -+ 00; the resulting velocity field is then 
identical to that derived above. Thus the work of this section is just a special case 
of $3.  

When (T -+ 00 we found in $ 4 that T could be written in the form 

T = T,+&~T,+cT-%?,+..., (B 13) 

and when To = 3389.9 we found that 

T,/To = - 4.898( 104 x c2) and T,/T, = - 84-81( lo4 x E ~ ) .  

When c -+ 00 we have that f - exp [ - (iv)$], so that the time dependence of 
the basic flow is confined to a thin Stokes layer at the inner cylinder. We refer to 
this layer as the inner layer and define a stretched variable for this layer by 

y = C(&T)+, (B 14) 

and note from (B 4) and (B 7)  that in this layer 

} (B15) 
f* B f m  6 2  - +f”(O) 72, 90 - g20)  6 (44-b; (0) r ,  

fof N $f$’’(0)C2 N (T-1f$”(o)q2, gof g$’(o)c” (&(T)-*qof’(o)r, 

where a prime denotes a derivative with respect to 5. If we rescale (B 5) in terms 
of 7 and use (B 15) we see that in the inner layer (f,,, gll) is determined by 

fll = 91, = df,,/dr = 0 ,  y = 0. 

Thus we can immediately see that in this layer fil - a-g and g,, - d, which is 
consistent with the orders of magnitude of the corresponding dominant unsteady 
velocity components (proportional to eiT) found in $4.  Since when v + co the 
function f(c, (T) is exponentially small away from the inner layer we need only 
evaluate (f,,, gll) there to evaluate (B 5). Using (B 15) and (B 16) we immediately 
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see that T, N r3, which is again consistent with the results of $ 4. Unfortunately 
the solution of (B 16) contains an unknown constant which can only be deter- 
mined by matching onto the corresponding solution away from the inner layer. 
Thus if we want to  determine the coefficient of this order-ud3 term we must follow 
the method of $ 4  and use the method of matched asymptotic expansions. It 
suffices here to say that such a procedure shows that fll and g,, are just the 
terms d u !  and r % v !  of $ 4  respectively. Using the expressions for u! and v! 
found in $ 4  and (B 15) we can show that 

If we substitute for T2 from (B 17) into (B2) we find that  the asymptotic form 
obtained is identical up to order e 2 r 3  with that found in $ 4. Similarly, by evalu- 
ating the order-crz term in (B 17) we find that the expansions are identical to 
order s 2 d .  

Thus we see that by taking the further limit u + 00 we can recover the results 
of $4. The constraint that  B < 1 makes it easier t o  see of what order in v the 
first correction term of T from To should be in the high frequency limit. However, 
if we wish to evaluate this term precisely, we must perform the matched asymp- 
totic analysis given in $4, which we recall was valid for arbitrary E .  

Results and discussion 

As a starting point for the numerical calculations we assumed the following 
critical values for a and To: 

a = 3.1266, To = 3389.9. (B 18) 

Using the above values we first solved (B4) and (B8) by a fourth-order Runge- 
Kutta scheme with 140 steps. For a given value of u we then solved (B5) by a 
similar procedure and used the results to  integrate using Simpson’s rule. The 
results are shown in figure 9, where we have plotted T, as a function of (T. We 
see that T, increases monotonically to zero as (T increases. The maximum de- 
stabilization is in the limit of zero frequency. 

I n  figure 10 we have compared the numerical solution with the low frequency 
asymptotic solution of $3.  The results agree well up to u N 4, where the numerical 
solution rises less steeply than the asymptotic solution. In  figure 1 I we have made 
a similar comparison in the high frequency limit. We see that the numerical 
and asymptotic solutions agree well for the solu- 
tions diverge slowly, the asymptotic solution eventually crossing the T2 axis. 

We now discuss some possible reasons for the discrepancy between the experi- 
mental and theoretical results. It is possible that by working to higher order in B 
the discrepancy would be removed. However there are reasons why we believe 
this to be very unlikely. First, the values of s used by Donnelly were typically 
of order 0.1, so that we can confidently expect effects at  orders 19, s6, etc., to  
be negligible. The maximum enhancement of stability observed by Donnelly 

N 700. Below this value of 
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FIGURE Order-e2 correction to T from To as a function of u. 
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FIGURE 10. Comparison of the low frequency asymptotic solution 
and the numerical solution for small r. 

was for cr N 0.2. We have already seen that the o r d e r 4  correction to T from To 
obtained numerically agrees well with the low frequency results of $ 3  for cr 
of this order of magnitude. We might also expect that a similar agreement would 
be found for the order-@ term in the expansion of T .  However, the method of 
3 3 shows that for small r~ this term, which we denote by T4, is expressible in the 
form T4 = T40 + ~ T ~ T ~ ~  + @T,, . . . , (B 19) 
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High frequency asymptotic solution 

0 

umerical solution - 1.0 
T2 

- 2.0 

FIGURE 11. Comparison of the high freqiioricy asymptotic solution and the 
numerical solution for large G .  

and T4,, was found by Hall (1973) to have the numerical value - 1303. (This value 
includes a correction due to  the fact that the critical value of a is altered by an 
amount of order c2 from its unmodulated value.) Thus, unless the higher-order 
terms in (B19) are extremely large and positive, there is no possibility of T4 
producing the pronounced stabilization observed by Donnelly. Moreover, since 
Donnelly's optimum value of CT was independent of E ,  such an effect cannot be 
explained by summing contributions of orders c2, c4, etc., since any optimum 
value of r obtained by such a procedure would necessarily depend on E .  

Finally we should like to say a few words about how nonlinear effects can be 
put into the framework of this appendix. Suppose that the Taylor number is 
perturbed by an amount of order €2 from its unmodulated value To. Thus we write 

T = T0+c2T$ +..., (B20) 

and the flow is therefore stable or unstable according to the linear theory of Q 2 
depending on whether TZ+ is less or greater than T,, defined by (B7). We know 
from the unmodulated problem that when the Taylor number T is slightly 
greater than its critical value To the amplitude of the Taylor-vortex velocity 
field is then proportional to (T- To)*. Hence, in view of (B20), we expect that any 
equilibrium perturbation to the modulated flow will have amplitude of order E .  

Thus we expand the perturbation velocity in the form 

u = A ~ u , c o s a x + ~ ~ ( ( ~ , e ~ ~ + G , ~ - ~ ~ )  cosaz+u2,cos2az+u,,) 

+ c3{u31 cos az + u33 cos 3nz + (ul3oi7 + G13e-i7) cos ax 

+ (u3,ei7 + G 3 , c i 7 )  cos 3az + (u30ei7 +G30e-i7) 

+ (u34e2" +G3,e-2iT) cosaz} + O(c4), etc. (B.21) 

All the terms apart from the first in (B 2 1) are produced by nonlinear interactions. 
However, some of these interactions axe between the basic flow and the disturb- 
ance whilst some involve only the disturbance. The terms uo, u2, and u20 are 
the usual fundamental, mean and first-harmonic terms for the unmodulated 
problem. These terms are produced by interactions involving only the disturb- 
ance. (In the notation of Davey (1962) we have uo = U1, uz0 = 0 and u2, = - $E2.) 
The term u1 arises from the interaction of the basic flow and the fundamental 
and is just the term fil introduced in $2. The order4 terms are produced by 
interactions between the order4 terms and either the fundamental or the 
unsteady part of the basic flow. The term ugl has contributions from both such 
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interactions. Without modulation we find that the solvability condition on the 
differential system determining the order-e3 steady fundamental term is 

A2 = rT,+ /2a, To, (B22)  

where I? and a, are negative constants determined by integral conditions in- 
volving the steady fundamental, mean and first-harmonic terms. The value of A 
determined by (B 22) is just the equilibrium amplitude solution of Davey’s 
(1962) truncated third-order amplitude equation. With modulation we find that 
(B 22) becomes 

where T2 is defined by (B 7). Thus finite amplitude perturbations to the flow can 
exist only when T is greater than its critical value. 
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